We are interested in the mechanisms used within the brain to mediate cognitive processes and guide learned behaviours. Professor Matthew Nolan Professor of Neural Circuits and Computation Hugh Robson Building 15 George Square Edinburgh EH8 9XD Contact details Work: +44 (0)131 650 9874 Email: Matt.Nolan@ed.ac.uk Web: Nolan Lab website Personal profile 2014 - present: Chair of Neural Circuits and Computation, University of Edinburgh 2011 - 2014: Reader, University of Edinburgh 2007 - 2010: Marie Curie Excellence Team Leader, University of Edinburgh 2006 - 2011: Lecturer, University of Edinburgh 1999 - 2006: Postdoctoral Research Fellow, Columbia University, New York, USA 1997 - 1999: Postdoctoral Research fellow, University of Aberdeen 1993 - 1997: PhD, University of Aberdeen Research Theme Synapses, Circuits and Behaviour Research Dr Matthew Nolan's research briefing We want to understand how cognitive functions of the brain emerge from its neural circuitry. Our main focus is on cellular and circuit mechanisms for spatial cognition and memory. Approaches used in the lab include virtual reality based behavioural assays, in vivo and ex vivo electrophysiology and optogenetics, molecular and classical neuroanatomical methods, and computational modelling. Funding BBSRC Simons Initiative for the Developing Brain Wellcome Trust Team members Jack Armstrong (PhD student) Christina Brown (Postdoctoral Fellow) Kurtuluş Buluş (PhD student) Harry Clark (PhD student) Kirsty Craigie (Research Technician) Derek Garden (Postdoctoral Fellow) Klara Gerlei (Postdoctoral Fellow) Ian Hawes (PhD student) Junji Hua (PhD student) Cristina Martinez-Gonzalez (Postdoctoral Fellow) Alyssa Meng (Research Technician) Teris Tam (Postdoctoral Fellow) Sara Tennant (Postdoctoral Fellow) Tian Tian (Postdoctoral Fellow) Brianna Vandrey (Postdoctoral Fellow) Collaborations Istvan Gyongy (School of Engineering) Yiannis Papastathopoulos (Centre for Statistics) Emma Wood (CDBS) Selected Publications Klara Gerlei, Jessica Passlack, Ian Hawes, Brianna Vandrey, Holly Stevens, Ioannis Papastathopoulos and Matthew F. Nolan (2020). Grid cells are modulated by local head direction. Nature Communications, 11, 4228. PMCID: PMC7445272. Preprint (2019): doi: https://doi.org/10.1101/681312. Pastoll, H., Garden D.L.F., Sürmeli G., Nolan M.F. (2020). Inter- and intra-animal variation in the integrative properties of stellate cells in the medial entorhinal cortex. eLife, 9:e52258. doi: 10.7554/eLife.52258. PMCID: PMC70675841. Preprint (2019): https://www.biorxiv.org/content/10.1101/678565v2. Vandrey B., Garden D.L.F., Ambozova V., McClure C., Nolan M.F.*, Ainge J.A.* (2020). Fan cells in layer 2 of lateral entorhinal cortex are critical for episodic-like memory. Current Biology, 30(1): 169-175.e5. PMCID: PMC6947484. Preprint (2019): https://www.biorxiv.org/content/10.1101/543777v2. * Equal contributing corresponding authors. Garden D.L.F.*, Oostland M.*, Jelitai M., Rinaldi A., Duguid I. & Nolan M.F. (2018). Inferior olive HCN1 channels coordinate synaptic integration and complex spike timing. Cell Reports, 22(7): 1722-33. * Equal contribution of both authors. PMCID: PMC5847187. Tennant S.A., Fischer L., Garden D.L.F., Gerlei K.Z., Martinez-Gonzalez C., McClure C., Wood E.R. & Nolan M.F. (2018). Stellate cells in the medial entorhinal cortex are required for spatial learning. Cell Reports, 22(5): 1313-1324. PMCID: PMC5809635. Schmidt-Hieber, C. & Nolan, M.F. (2017). Synaptic integrative mechanisms for spatial cognition. Nature Neuroscience, 20(11): 1483-1492. Sürmeli G., Marcu D-C., McClure C., Garden D.L.F., Pastoll H. & Nolan M.F. (2015). Molecularly defined circuitry reveals input-output segregation in deep layers of the medial entorhinal cortex. Neuron 88(5):1040-1053. PMCID: 4675718. Pastoll H., Solanka L., van Rossum M.C.W. & Nolan M.F. (2013). Feedback inhibition enables theta-nested gamma oscillations and grid firing fields. Neuron 77, 141-154. PMID:23312522 O’Donnell, C. and Nolan, M.F. (2011). Tuning of synaptic integration: an organizing principle for optimization of neural circuits. Trends in Neurosciences 34, 51-60. DOI: 10.1016/j.tins.2010.10.003. PMID:21067825. Garden, D.L.F.*, Dodson , P.D.*, O’Donnell, C., White, M.D. & Nolan, M.F. (2008). Tuning of Synaptic Integration in the Medial Entorhinal Cortex to the Organization of Grid Cell Firing Fields. Neuron 60, 875-889. PMID:19081381. * Equal contribution of both authors. Video Research in a Nutshell: Neuronal computation Information for students: Willingness to discuss research projects with undergraduate and postgraduate students: YES - please click here This article was published on 2022-10-17