Personal profile
- 2004 - 2007: Senior Lecturer, CIP
- 2001 - 2004: Lecturer, Division of Biomedical Sciences
- 1998 - 2001: Principal Investigator (Wellcome Grant), Department of Physiology, University Medical School
- 1995 - 1998: Research Fellow (DFG) Department of Physiology, University Medical School
- 1993 - 1995: Research Fellow (Fogarty/NIH) Department of Physiology/Pharmacology, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, North Carolina, USA
- 1989 - 1993: Research Assistant, Department of Biology, University of Leipzig, Germany
Trustee of the Physiological Society
Trustee and treasurer of the British Society for Neuroendocrinology
Reseach Theme
Research
Prof Mike Ludwig's research briefing 1
Prof Mike Ludwig's research briefing 2
The hypothalamus controls the secretion of all pituitary hormones and many homeostatic control systems; it controls appetite, thirst, body composition, metabolism, all aspects of reproduction, and physiological responses to stress. These neurones are mediators of many specific behaviours, including feeding, sexual and aggressive behaviours, social interaction, maternal care and bonding.
The brain uses more than 100 different peptides as chemical signals to communicate information, and these have a role in information processing that is quite unlike that of conventional neurotransmitters. Neuropeptides are released from all parts of a neuron, including the axon, soma and, especially, the dendrites, and so are not restricted spatially by synaptic wiring.
We are interested in understanding the basic mechanisms by which peptides affect the functional properties of neuronal networks, and exactly how they can have apparently specific behavioural effects. Of these, the vasopressin and oxytocin neurons have proved to be good model systems for revealing important aspects of many neuronal functions, including neuropeptide release, leading to the understanding of the importance of peptide release from neuronal dendrites.
The mechanisms for dendritic neuropeptide release can be very different from axon terminal release, and for vasopressin and oxytocin, differentially regulated release allows peptide effects in the body to be independent from peptide effects in the brain.
We are currently studying novel populations of vasopressin cells in the olfactory bulb and the retina. In the olfactory system, vasopressin is involved in social recognition and vasopressin signaling in this system underlies the ability of these neurons to filter out social odour cues. We recently found that the retina also contains many vasopressin-expressing cells, and that, strikingly, these communicate mainly with the suprachiasmatic nucleus, the body’s biological clock, regulating circadian rhythms.
Our studies address contemporary questions in neuroscience using whole animal physiological approaches including in vivo electrophysiology, microdialysis and behavioural analysis. The functions of the hypothalamus have been tightly conserved through mammalian evolution, making findings from rodents translatable to humans. The diversity of neuropeptides and the even greater diversity of receptors expressed at specific locations in the brain open many possibilities for precise molecular targeting of therapeutic interventions.