Neuronal processing of visual information. Professor Nathalie Rochefort Professor of NeuroscienceHugh Robson Building15 George SquareEdinburgh, EH8 9XDContact details Work: + 44 131 650 3552 Email: n.rochefort@ed.ac.uk Web: Rochefort Lab Twitter @RochefortLab Personal Profile2022 - present: Professor, University of Edinburgh2014 - 2021: Sir Henry Dale fellow, funded by the Wellcome Trust and the Royal Society2013 - 2022: Chancellor’s fellow, University of Edinburgh2007 - 2012: Post-doctoral research fellow, Institute of Neuroscience, Technical University Munich, Germany2002 - 2007: Ph.D., Laboratory of Neurophysiology, Ruhr-Universität, Bochum, Germany and Laboratory of Physiologie de la Perception et de l’Action, CNRS/Collège-de-France, Paris, France2002: Master in Neuroscience, University Paris VI2000: Master in Epistemology, University Paris VII2000: BS Biology-Biochemistry, University Paris VI, Ecole Normale Supérieure, ParisResearch ThemeSynapses, Circuits and BehaviourResearchOur aim is to reveal how neuronal networks integrate sensory information in a way that is relevant for the animal’s behaviour. We are using the mouse primary visual cortex as a model system of cortical integration of sensory and non-sensory information. Neurons in the primary visual cortex respond to specific features of visual stimuli such as their location, their orientation and their direction of movement. These visual responses do not only depend on the characteristics of the stimuli but are also strongly modulated by the context in which they are perceived, such as the animal’s behavioural state and its previous experience associated with these stimuli.By using two-photon calcium imaging combined with electrophysiological recordings in awake behaving mice, our current projects investigate:- How visually-guided behaviour modulates neuronal activity in the primary visual cortex- How individual pyramidal neurons integrate feed-forward visual inputs with top-down contextual inputs.- How cortical information processing relates to energy consumptionUsing such information, we apply the same combination of methods to study how this network activity is disrupted in the brain of mouse models for autistic spectrum disorders and intellectual disabilities.Funding ERC Consolidator grantBBSRC Research grant Sir Henry Dale fellowshipSimons Initiative for the Developing Brain (SIDB)BBSRCWellcome-UoE Institutional Strategic Support Fund (ISSF)RS MacDonaldMarie Curie Career Integration GrantMarie Curie Intra-European fellowship (Dr Janelle Pakan)Awards2019: EMBO Young Investigator (YIP) award2017: The Physiological Society’s 2017 R Jean Banister Prize Lecture2013: Schilling Research Award of the German Neuroscience Society 20132011: Bernard Katz Lecture Award, Alexander von Humboldt Foundation2006: Research prize from the French national association for the blind and visually-disabled people (FAF)Team membersDr Zahid Padamsey (Postdoctoral fellow; Royal Society commission 1851; BBSRC)Dr Danai Katsanevaki (Postdoctoral fellow)Dr Tom Flossmann (Walter Benjamin post-doctoral fellow; DFG, Germany)Dr Alfredo Llorca Molina (Postdoctoral fellow)Theoklitos Amvrosiadis, (PhD student; MRC Precision medicine DTP)Arthur Zhang (PhD student; MRC Precision medicine DTP)Zihao Chen (PhD student; SIDB)Patricia Maeso Hernandez (Research assistant)Lab alumniDr Janelle Pakan (Post-doctoral fellow, Marie Curie Fellow), now: PI, Pakan lab, DZNE Magdeburg.Dr Sander Keemink: now Assistant professor, AI department, Donders Institute, Radboud University Nijmegen, Netherlands. Dr Stephen Currie (Postdoctoral fellow), now: Post-doctoral fellow, University of Edinburgh.Dr Christopher Coutts, (Postdoctoral fellow), now: Resident Physician, Neurosurgery, University Hospital Magdeburg, GermanyDr Lukas Fischer (Postdoctoral fellow), now: Post-doctoral associate, MIT, USADr Evelyn Dylda (PhD student), now: Postdoctoral fellow, University of Rochester Medical Center, NY, USADr Tristan Altwegg-Boussac (Postdoctoral researcher), now: Post-doctoral researcher, ICM, Paris.Dr Scott Lowe (PhD student, research assistant), now: Post-doctoral fellow Dalhousie University, Halifax, Canada, and Vector Institute, Toronto, CanadaDr Valerio Francioni (PhD student; Postdoctoral fellow), now: Post-doctoral associate, MIT, USANathalie Dupuy now Project leader, Biosimulation Scientist at Physiomics plcCollaborationsMáté Lengyel (University of Cambridge) Ian Duguid (University of Edinburgh)Tomas Cizmar (Leibniz Institute of Photonic Technology)Arno Onken (School of Informatics, University of Edinburgh) Peter Kind and the Simons Initiative for the Developing Brain (SIDB) (University of Edinburgh)Matthias Hennig (School of Informatics, University of Edinburgh)Mark Van Rossum (School of Informatics, University of Edinburgh)Oscar Marin (King’s College London)Publications* Equal contributionnPadamsey Z., Katsanevaki D., Maeso P., Rizzi M., Osterweil E., Rochefort N.L., 2024. Sex-specific resilience of neocortex to food restriction, eLife, 12:RP93052. https://doi.org/10.7554/eLife.93052.3Bryan M. Li, Isabel Maria Cornacchia, Nathalie Rochefort and Arno Onken, V1T: large-scale mouse V1 response prediction using a Vision Transformer, 2023. Transactions on Machine Learning Research, 2835-8856, pdf (openreview.net)Padamsey Z., Katsanevaki D., Dupuy N., Rochefort N.L., 2022. Neocortex saves energy by reducing coding precision during food scarcity, Neuron, S0896-6273(21)00839-4, https://doi.org/10.1016/j.neuron.2021.10.024Nina Kudryashova , Theoklitos Amvrosiadis, Nathalie Dupuy, Nathalie Rochefort, Arno Onken, 2022. Parametric Copula-GP model for analyzing multidimensional neuronal and behavioral relationships. PLoS Comput Biol., 18(1):e1009799, https://doi.org/10.1371/journal.pcbi.1009799Dacre J, Colligan M, Clarke T, Ammer JJ, Schiemann J, Chamosa-Pino V, Claudi F, Harston J.A., Eleftheriou C., Pakan J.M.P., Huang C.C., Hantman A.W., Rochefort N.L., Duguid I., 2021. A cerebellar-thalamocortical pathway drives behavioral context-dependent movement initiation. Neuron, 21;109(14):2326-2338.e8. doi: 10.1016/j.neuron.2021.05.016Katsanevaki D., Rochefort N.L., 2021. Loss of Inhibition Gives Perspective: Developmental Apoptosis of GABAergic Chandelier Cells Primes Binocular Vision. Neuron, 109(3):398-400, doi: 10.1016/j.neuron.2021.01.010. Flossmann T, Rochefort N.L., 2021. Spatial navigation signals in rodent visual cortex. Current Opinion in Neurobiology, Volume 67, Pages 163-173, https://doi.org/10.1016/j.conb.2020.11.004Padamsey Z., Rochefort N.L., 2020. Defying Expectations: How Neurons Compute Prediction Errors in Visual Cortex. Neuron, Volume 108, Issue 6, Pages 1016-1019, https://doi.org/10.1016/j.neuron.2020.12.005Henschke J.*, Dylda E.*, Katsanevaki D.*, Dupuy N., Currie S.P., Amvrosiadis T., Pakan J.M.P.* and Rochefort N.L.*, 2020. Reward association enhances stimulus-specific representations in primary visual cortex, Current Biology, https://doi.org/10.1016/j.cub.2020.03.018. Francioni V., Padamsey Z., Rochefort N.L., 2019. High and asymmetric somato-dendritic coupling of V1 layer 5 neurons independent of visual stimulation and locomotion, eLife, 8:e49145; doi: 10.7554/eLife.49145 Sergey Turtaev, Ivo T. Leite, Tristan Altwegg-Boussac, Janelle M. P. Pakan, Nathalie L. Rochefort * & Tomáš Čižmár *, 2018. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging, Light: Science & Applications, volume 7, Article number: 92, https://doi.org/10.1038/s41377-018-0094-xDylda, E.*, Pakan, J.M.P.* and Rochefort, N.L., 2019. Chronic Two-Photon Calcium Imaging in the Visual Cortex of Awake Behaving Mice (Book Chapter), Handbook of Behavioral Neuroscience, Volume 28, Pages 235-251, Edited by D. Manahan-Vaughan, Elsevier.Pakan J.M.P.*, Currie S.P.*, Fischer L.*, Rochefort N.L., 2018. The Impact of Visual Cues, Reward, and Motor Feedback on the Representation of Behaviorally Relevant Spatial Locations in Primary Visual Cortex. Cell Rep., 24(10):2521-2528. https://doi.org/10.1016/j.celrep.2018.08.010Lim L, Pakan JMP, Selten MM, Marques-Smith A, Llorca A, Bae SE, Rochefort NL, Marín O., 2018. Optimization of interneuron function by direct coupling of cell migration and axonal targeting. Nat Neurosci. 21(7):920-931. doi: 10.1038/s41593-018-0162-9. Pakan J.M.P., Francioni V., Rochefort N.L., 2018. Action and learning shape the activity of neuronal circuits in the visual cortex. Curr Opin Neurobiol. 2018 Oct;52:88-97. https://doi.org/10.1016/j.conb.2018.04.020Keemink, S.W.*, Lowe, S.C.*, Pakan, J.M.P., Dylda, E., van Rossum, M.C.W., Rochefort, N.L., 2018. FISSA: A neuropil decontamination toolbox for calcium imaging signals. Sci. Rep. 8, 3493. https://doi.org/10.1038/s41598-018-21640-2Pakan, J.M.P., Lowe, S.C., Dylda, E., Keemink, S.W., Currie, S.P., Coutts, C.A., Rochefort, N.L., 2016. Behavioral-state modulation of inhibition is context-dependent and cell type specific in mouse visual cortex. Elife 5, e14985. https://doi.org/10.7554/eLife.14985Chen, X., Rochefort, N.L., Sakmann, B., Konnerth, A., 2013. Reactivation of the Same Synapses during Spontaneous Up States and Sensory Stimuli. Cell Rep. 4, 31–39. https://doi.org/10.1016/j.celrep.2013.05.042Chen, X., Leischner, U., Varga, Z., Jia, H., Deca, D., Rochefort, N.L., Konnerth, A., 2012. LOTOS-based two-photon calcium imaging of dendritic spines in vivo. Nat. Protoc. 7, 1818–1829. doi:10.1038/nprot.2012.106Rochefort, N.L., Konnerth, A., 2012. Dendritic spines: from structure to in vivo function. EMBO Rep. 13, 699–708. https://doi.org/10.1038/embor.2012.102Grienberger, C.*, Rochefort, N.L.*, Adelsberger, H., Henning, H. a, Hill, D.N., Reichwald, J., Staufenbiel, M., Konnerth, A., 2012. Staged decline of neuronal function in vivo in an animal model of Alzheimer’s disease. Nat. Commun. 3, 774. https://doi.org/10.1038/ncomms1783Rochefort, N.L.*, Narushima, M.*, Grienberger, C., Marandi, N., Hill, D.N., Konnerth, A., 2011. Development of Direction Selectivity in Mouse Cortical Neurons. Neuron 71, 425–432. doi:10.1016/j.neuron.2011.06.013Chen, X.*, Leischner, U.*, Rochefort, N.L., Nelken, I., Konnerth, A., 2011. Functional mapping of single spines in cortical neurons in vivo. Nature 475, 501–505. doi:10.1038/nature10193Jia, H.*, Rochefort, N.L.*, Chen, X., Konnerth, A., 2011. In vivo two-photon imaging of sensory-evoked dendritic calcium signals in cortical neurons. Nat. Protoc. 6, 28–35. doi:10.1038/nprot.2010.169Rochefort, N., 2010. Organisation dendritique et caractéristiques fonctionnelles des afférences visuelles sur les neurones corticaux. Médecine/Sciences 26, 1009–1012. https://doi.org/10.1051/medsci/201026121009Jia, H.*, Rochefort, N.L.*, Chen, X., Konnerth, A., 2010. Dendritic organization of sensory input to cortical neurons in vivo. Nature 464, 1307–1312. doi:10.1038/nature08947Rochefort N.L., Grienberger C. and Konnerth A., 2010. In vivo two-photon calcium imaging using multicell bolus loading of fluorescent indicators, Imaging in Neuroscience: A Laboratory Manual, R. Yuste, F. Helmchen and A. Konnerth, editors, Cold Spring Harbor Laboratory Press, NY, chapter 9.Rochefort, N.L.*, Garaschuk, O.*, Milos, R.-I.*, Narushima, M., Marandi, N., Pichler, B., Kovalchuk, Y., Konnerth, A., 2009. Sparsification of neuronal activity in the visual cortex at eye-opening. Proc. Natl. Acad. Sci. 106, 15049–15054. doi:10.1073/pnas.0907660106Rochefort, N.L., Buzás, P., Quenech’du, N., Koza, A., Eysel, U.T., Milleret, C., Kisvárday, Z.F., 2009. Functional Selectivity of Interhemispheric Connections in Cat Visual Cortex. Cereb. Cortex 19, 2451–2465. 2009. doi:10.1093/cercor/bhp001Rochefort, N.L., Jia, H., Konnerth, A., 2008. Calcium imaging in the living brain: prospects for molecular medicine. Trends Mol. Med. 14, 389–399. doi:10.1016/j.molmed.2008.07.005Rochefort, N.L., Konnerth, A., 2008. Genetically encoded Ca2+ sensors come of age. Nat. Methods 5, 761–762. doi:10.1038/nmeth0908-761Rochefort, N.L., Buzás, P., Kisvárday, Z.F., Eysel, U.T., Milleret, C., 2007. Layout of transcallosal activity in cat visual cortex revealed by optical imaging. Neuroimage 36, 804–821. doi:10.1016/j.neuroimage.2007.03.006Rochefort, N., Quenech’du, N., Ezan, P., Giaume, C., Milleret, C., 2005. Postnatal development of GFAP, connexin43 and connexin30 in cat visual cortex. Dev. Brain Res. 160, 252–264. doi:10.1016/j.devbrainres.2005.09.011Rochefort, N., Quenech’du, N., Watroba, L., Mallat, M., Giaume, C., Milleret, C., 2002. Microglia and astrocytes may participate in the shaping of visual callosal projections during postnatal development. J. Physiol. Paris 96, 183–92.Information for students:Willingness to discuss research projects with undergraduate and postgraduate students: YES - please click here This article was published on 2022-10-17