The group is interested in the regeneration of the spinal cord. Dr Thomas Becker Honorary Reader Chancellor's Building 49 Little France Crescent Edinburgh, EH16 4SB Contact details Email: thomas.becker@ed.ac.uk Personal profile 2020 - 2021 Reader and Programme Director, MSc Integrative Neuroscience. 2015 - 2020 Senior Lecturer and Programme Director, MSc Integrative Neuroscience. 2011 - 2015 Lecturer and Programme Director, MSc Integrative Neuroscience. 2005 - 2011 Senior Researcher, Deanery of Biomedical Sciences, University of Edinburgh. 2006 - Habilitation and Venia legendi, Medical faculty, University of Hamburg. 2000 - 2005 Group Leader, Centre for Molecular Neurobiology Hamburg (ZMNH). 1998 - 2000 Postdoc, Centre for Molecular Neurobiology Hamburg (ZMNH). 1996 - 1998 Postdoc, Dept Dev Cell Biol, University of California, Irvine. 1994 - 1996 Postdoc, Swiss Federal Institute of Technology, Zürich. 1993 PhD Neurobiology, University of Bremen. Research Theme Injury and Repair Genes and Development Research Zebrafish have an amazing capacity for central nervous system (CNS) regeneration. They regain function after complete lesions of the spinal cord. Such lesions in mammals are not repaired and functions are permanently lost. Evidence suggests that ependymo-radial glial cells (ERGs) in the spinal cord are crucial for the regeneration process by generating new neurons and facilitating repair of axonal connections (for review see: Becker and Becker, 2015, Neuronal Regeneration from Ependymo-radial Glial Cells: Cook, Little Pot, Cook! Developmental Cell 32(4):516-27). Recent BBSRC funding allows us to ask two fundamental questions: How can zebrafish replace lost neurons from adult stem cells? What are the signals that promote neuronal regeneration? To address these questions, we study gene regulation in ERGs that leads to reprogramming of quiescent ERGs for neurogenesis after a lesion, focussing on histone acetylation and we analyse immune signals as mediators of the regenerative response. By analysing development and regeneration of important cell types in the zebrafish we hope to gain insight into fundamental developmental and regenerative mechanisms in the CNS, and to ultimately increase our understanding of human conditions, such as spinal cord injury. We closely collaborate with the group of Catherina Becker. Group Members Catherina G. Becker, Co-PI Rachel Branch, PhD Student Louisa Drake, PhD Student Ana-Maria Oprişoreanu,Post-doctoral Fellow Claire Richmond, PhD Student Princess Royal TENOVUS Scotland Medical Research Scholar Funding BBSRC, BBSRC Eastbio, UoE Edinburgh/McGill Partnership Collaborations J Douglas Armstrong, Systems Neurobiology Informatics Forum, University of Edinburgh Sam David, McGill University Yi Feng, University of Edinburgh Tom Gillingwater, University of Edinburgh TJ van Ham, University of Rotterdam JP Hugnot, Montpellier, France David Lyons, University of Edinburgh Dirk Sieger, University of Edinburgh Kevin Talbot, Oxford University Martyna Lukoseviciute/Jonas Frisén, Karolinska Institute, Sweden Selected Publications * Senior author Oprişoreanu AM, Smith HL, Krix S, Chaytow H, Carragher N, Gillingwater TH, Becker CG*, Becker T*, (2021) Automated in vivo drug screening for synapse-stabilisation in zebrafish. Disease Models and Mechanisms, in press Cavone L, McCann T, Drake LK, Aguzzi EA, Oprişoreanu AM, Pedersen E, Sandi S, Selvarajah J, Tsarouchas TM, Wehner D, Keatinge M, Henderson BEP, Dobie R, Henderson NC, Becker T* and Becker CG*. A unique macrophage subpopulation signals directly to progenitor cells to promote regenerative neurogenesis in the zebrafish spinal cord. Developmental Cell, accepted in principle (2021). Keatinge M, Tsarouchas TM, Munir T, Larraz J, Gianni D, Tsai HH, Becker CG*, Lyons DA*, Becker T* (2021) Phenotypic screening using synthetic CRISPR gRNAs reveals pro-regenerative genes in spinal cord injury, PLoS Genetics in press, https://doi.org/10.1101/2020.04.03.023119https://doi.org/10.1101/2020.04.03.023119 Becker CG*, Becker T* Coaxing stem cells to repair the spinal cord. Science. (2020). Keatinge, M., Tsarouchas, T., Munir, T., Larraz, J., Gianni, D., Tsai, H.-H., Becker, C.G.*, Lyons, D.A.* & Becker, T.* Phenotypic screening using synthetic CRISPR gRNAs reveals pro-regenerative genes in spinal cord injury. BioRxiv (2020) Becker, T.* & Becker, C.G.* Dynamic cell interactions allow spinal cord regeneration in zebrafish. Curr Opin Physiol (2020). Oprisoreanu, A.M., Smith, H.L., Arya, S., Webster, R., Zhong, Z., Wehner, D., Cardozo, M.J., Becker, T.*, Talbot, K.* & Becker, C.G.* Interaction of Axonal Chondrolectin with Collagen XIXa1 Is Necessary for Precise Neuromuscular Junction Formation. Cell Rep 29, 1082-1098.e10 (2019). Caldwell, L.J., Davies, N.O., Cavone, L., Mysiak, K.S., Semenova, S.A., Panula, P., Armstrong, J.D., Becker, C.G.* & Becker, T.* Regeneration of Dopaminergic Neurons in Adult Zebrafish Depends on Immune System Activation and Differs for Distinct Populations. J Neurosci 39, 4694-4713 (2019). Tsarouchas, T.M., Wehner, D., Cavone, L., Munir, T., Keatinge, M., Lambertus, M., Underhill, A., Barrett, T., Kassapis, E., Ogryzko, N., Feng, Y., van Ham, T.J., Becker, T.* & Becker, C.G.* Dynamic control of proinflammatory cytokines Il-1beta and Tnf-alpha by macrophages in zebrafish spinal cord regeneration. Nat Commun 9, 4670 (2018). Becker, C.G. *, Becker, T.* & Hugnot, J.P.* The spinal ependymal zone as a source of endogenous repair cells across vertebrates. Prog Neurobiol 170, 67-80 (2018). Wehner, D., Tsarouchas, T.M., Michael, A., Haase, C., Weidinger, G., Reimer, M.M., Becker, T.* & Becker, C.G.* Wnt signaling controls pro-regenerative Collagen XII in functional spinal cord regeneration in zebrafish. Nat Commun 8, 126 (2017). Drummond, N.J., Davies, N.O., Lovett, J.E., Miller, M.R., Cook, G., Becker, T., Becker, C.G., McPhail, D.B. & Kunath, T. A synthetic cell permeable antioxidant protects neurons against acute oxidative stress. Sci Rep 7, 11857 (2017). Cardozo, M.J., Mysiak, K.S., Becker, T. & Becker, C.G*. Reduce, reuse, recycle - Developmental signals in spinal cord regeneration. Dev Biol 432, 53-62 (2017). Boyd, P.J., Tu, W.Y., Shorrock, H.K., Groen, E.J.N., Carter, R.N., Powis, R.A., Thomson, S.R., Thomson, D., Graham, L.C., Motyl, A.A.L., Wishart, T.M., Highley, J.R., Morton, N.M., Becker, T., Becker, C.G., Heath, P.R. & Gillingwater, T.H. Bioenergetic status modulates motor neuron vulnerability and pathogenesis in a zebrafish model of spinal muscular atrophy. PLoS Genet 13, e1006744 (2017). Ohnmacht, J., Yang, Y., Maurer, G.W., Barreiro-Iglesias, A., Tsarouchas, T.M., Wehner, D., Sieger, D., Becker, C.G.* & Becker, T.* Spinal motor neurons are regenerated after mechanical lesion and genetic ablation in larval zebrafish. Development 143, 1464-74 (2016). Barreiro-Iglesias, A., Mysiak, K.S., Scott, A.L., Reimer, M.M., Yang, Y., Becker, C.G.* & Becker, T.* Serotonin Promotes Development and Regeneration of Spinal Motor Neurons in Zebrafish. Cell Rep 13, 924-32 (2015). Wishart, T.M., Mutsaers, C.A., Riessland, M., Reimer, M.M., Hunter, G., Hannam, M.L., Eaton, S., Fuller, H.R., Roche, S.L., Somers, E., Morse, R., Young, P.J., Lamont, D.J., Hammerschmidt, M., Joshi, A., Hohenstein, P., Morris, G.E., Parson, S.H., Skehel, P.A., Becker, T., Robinson, I.M., Becker, C.G., Wirth, B. & Gillingwater, T.H. Disrupted ubiquitin homeostasis and β-catenin signalling in spinal muscular atrophy. J Clinic Invest 124, 1821-34 (2014). Sleigh, J.N., Barreiro-Iglesias, A., Oliver, P.L., Biba, A., Becker, T., Davies, K.E., Becker, C.G. & Talbot, K. Chondrolectin affects cell survival and neuronal outgrowth in in vitro and in vivo models of spinal muscular atrophy. Hum Mol Genet 23, 855-69 (2014). Munzel, E., Becker, C.G., Becker, T.* & Williams*, A. Zebrafish regenerate full thickness optic nerve myelin after demyelination, but this fails with increasing age. Acta Neuropathol Commun 2, 77 (2014). Becker, T.* & Becker, C.G.* Axonal regeneration in zebrafish. Curr Opin Neurobiol 27C, 186-191 (2014). Reimer, M.M., Norris, A., Ohnmacht, J., Patani, R., Zhong, Z., Dias, T.B., Kuscha, V., Scott, A.L., Chen, Y.C., Rozov, S., Frazer, S.L., Wyatt, C., Higashijima, S., Patton, E.E., Panula, P., Chandran, S., Becker, T.* & Becker, C.G.* Dopamine from the Brain Promotes Spinal Motor Neuron Generation during Development and Adult Regeneration. Dev Cell 25, 478-91 (2013). Dias, T.B., Yang, Y.J., Ogai, K., Becker, T.* & Becker, C.G. Notch signaling controls generation of motor neurons in the lesioned spinal cord of adult zebrafish. J. Neurosci. 32, 3245-52 (2012). Reimer, M.M., Sorensen, I., Kuscha, V., Frank, R.E., Liu, C., Becker, C.G. & Becker, T.* Motor neuron regeneration in adult zebrafish. J Neurosci 28, 8510-6 (2008). Information for students: Willingness to discuss research projects with undergraduate and postgraduate students: YES - please click here This article was published on 2022-10-17