Prof Becker's biography and research focus. Professor Catherina G Becker Honorary Professor The Chancellor's Building 49 Little France Crescent EH16 4SB Contact details Email: Catherina.Becker@ed.ac.uk Web: Academic Profile Research in a nutshell Personal profile 2017 - 2021: Deputy Director of CDBS. 2015 - 2017: CNR Centre Director. 2005 - 2015: CNR Director of Postgraduate Training. 2005 - 2021: Senior Lecturer, Deanery of Biomedical Sciences, University of Edinburgh. 2000 - 2005: Group Leader, Centre for Molecular Neurobiology Hamburg (ZMNH). 1998 - 2000: Postdoc, Centre for Molecular Neurobiology Hamburg (ZMNH). 1996 - 1998: Postdoc, Dept Dev Cell Biol, University of California, Irvine. 1994 - 1996: Postdoc, Swiss Federal Institute of Technology, Zürich. 1993: PhD Neurobiology with honours, University of Bremen. Research Theme Injury and Repair Genes and Development Research The Becker group is pursuing 3 main lines of research. We are investigating the cellular and molecular mechanisms underlying successful regeneration of the zebrafish spinal cord, focussing on the activation of spinal-intrinsic progenitor cells by the lesion and lesion induced neurogenesis (Becker and Becker (2015) Neuronal Regeneration from Ependymo-radial Glial Cells: Cook, Little Pot, Cook! Developmental Cell 32(4):516-27), as well as axonal regeneration (Becker and Becker (2014) Axonal Regeneration in Zebrafish. Current Opinion in Neurobiology 27C:186-191). We are using automated chemical compound screen in zebrafish models of motor neurone diseases, mainly spinal muscular atrophy, to identify targets for therapy. My group a founding member of the SMA UK Research Consortium, funded by the SMA Trust with £1.3m. We are investigating the molecular factors controlling the development of the spinal locomotor network to identify the fundamental relationship between network and function. In summary, my research contributes to a better understanding of the factors governing generation of neurons and axonal pathfinding in the CNS during development and regeneration. I use the zebrafish model to identify fundamental mechanisms in vertebrates with clear translational implications for CNS injury and neurodegenerative diseases. Funding BBSRC MRC/EU-COFUND Wellcome Trust Biogen SMA-Trust Group Members Thomas Becker, Co-PI Louisa Drake, PhD Student François El-Daher, Post-doctoral Fellow Robbie Hussain, MSc Student Lizi Lake, PhD Student Tom Ng, PhD Student Nicola Porter, Post-doctoral Researcher Claire Richmond, PhD Student Princess Royal TENOVUS Scotland Medical Research Scholar Zoë Speirs, MSc Student Collaborations Tom Gillingwater, University of Edinburgh Neil Henderson, University of Edinburgh JP Hugnot, Montpellier, France Matthias Kirsch/Ortrud Uckermann, University Hospital Dresden David Lyons, University of Edinburgh Serge Muyldermans, VUB, Brussels Dirk Sieger, University of Edinburgh Urszula Slaswinska, Warsaw, Poland Judith Sleeman, University of St Andrews Kevin Talbot, University of Oxford Martyna Lukoseviciute/Jonas Frisén, Karolinska Institute, Sweden Important Reviews Becker CG, Becker T (2020) Coaxing stem cells to repair the spinal cord. Science. DOI: 10.1126/science.abe1661 El-Daher F, Becker CG (2020) Neural circuit reorganisation after spinal cord injury in Zebrafish, Current Opinions in Genetics DOI: 10.1016/j.gde.2020.05.017 Becker T, Becker CG (2020) Dynamic cell interactions allow spinal cord regeneration in zebrafish, Current Opinions in Physiology 14:64–69 DOI: 10.1016/j.cophys.2020.01.009 Becker CG, Becker T, Hugnot JP (2018) The spinal ependymal zone as a source of endogenous repair cells across vertebrates, Progress in Neurobiology, in press DOI: 10.1016/j.pneurobio.2018.04.002 Cardozo MJ, Mysiak KS, Becker T, Becker CG (2017) Reduce, Reuse, Recycle - Developmental Signals in Spinal Cord Regeneration. Developmental Biology, DOI:10.1016/j.ydbio.2017.05.011 Becker CG, Becker T (2015) Neuronal regeneration from ependymo-radial glial cells: cook, little pot, cook! Developmental Cell 32 (4), 516-527, DOI: 10.1016/j.devcel.2015.01.001 Becker T, Becker CG (2014) Axonal regeneration in zebrafish, Current Opinion in Neurobiology 27, 186-191 DOI: 10.1016/j.conb.2014.03.019 Selected Publications Oprişoreanu AM, Smith HL, Krix S, Chaytow H, Carragher N, Gillingwater TH, Becker CG, Becker T, (2021) Automated in vivo drug screening for synapse-stabilisation in zebrafish. Disease Models and Mechanisms, in press Cavone L, McCann T, Drake LK, Aguzzi EA, Oprişoreanu AM, Pedersen E, Sandi S, Selvarajah J, Tsarouchas TM, Wehner D, Keatinge M, Henderson BEP, Dobie R, Henderson NC, Becker T and Becker CG. (2021) A unique macrophage subpopulation signals directly to progenitor cells to promote regenerative neurogenesis in the zebrafish spinal cord. Developmental Cell, accepted in principle https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3712669 Keatinge M, Tsarouchas TM, Munir T, Larraz J, Gianni D, Tsai HH, Becker CG*, Lyons DA*, Becker T* (2021) Phenotypic screening using synthetic CRISPR gRNAs reveals pro-regenerative genes in spinal cord injury, PLoS Genetics in press, https://doi.org/10.1101/2020.04.03.023119https://doi.org/10.1101/2020.04.03.023119 Oprişoreanu AM, SmithHL, AryaS, WebsterR, ZhongZ, WehnerD, CardozoMJ, Becker T, TalbotK, Becker CG (2019) Interaction of axonal Chondrolectin with Collagen XIXa1 is necessary for precise neuromuscular junction formation. Cell Reports, 29(5):1082-1098.e10 DOI: 10.1016/j.celrep.2019.09.033 Caldwell LJ, Davies NO, Cavone L, Mysiak KS, Semenov SA, Panula P, Armstrong JD, Becker CG*, Becker T* (2019) Regeneration of dopaminergic neurons in adult zebrafish depends on immune system activation and differs for distinct populations, J Neurosci 12;39(24):4694-4713 DOI: 10.1523/JNEUROSCI.2706-18.2019 Tsarouchas TM, Wehner D, Cavone L, Munir T, Keatinge M, Lambertus M, Underhill A, Barrett T, Kassapis E, Ogryzko N, Feng Y, van Ham TJ, Becker T, Becker CG (2018) Dynamic control of proinflammatory cytokines Il-1β and Tnf-α by macrophages is necessary for functional spinal cord regeneration in zebrafish, Nature Communication 7;9(1):4670 DOI: 10.1038/s41467-018-07036-w Wehner D, Tsarouchas TM, Michael A, Haase C, Weidinger G, Reimer MM, Becker T*, Becker CG* (2017) Wnt signaling controls a pro-regenerative extracellular matrix in functional spinal cord regeneration, Nature Communications 25;8(1):126 DOI: 10.1038/s41467-017-00143-0 Boyd PJ, Tu WY, Shorrock HK, Powis RA, Groen EJN, Thomson SR, Thomson D, Graham LC, Wishart TM, Highley JR, Becker T, Becker CG, Heath PR, Gillingwater TH (2017) Bioenergetic status determines motor neuron vulnerability in spinal muscular atrophy, PLoS Genetics 13(4):e1006744 Ohnmacht J, Yang Y, Maurer GW, Barreiro-Iglesias A, Tsarouchas TM, Wehner D, Sieger D, Becker CG*, Becker T* (2016). Spinal Motor Neurons are Regenerated after Mechanical Lesion and Genetic Ablation in Larval Zebrafish. Development 143:1464-1474 Barreiro-Iglesias A, Mysiak KS, Scott AL, Reimer MM, Yang YJ, Becker CG*, Becker T* (2015). Serotonin Promotes Development and Regeneration of Spinal Motor Neurons in Zebrafish. Cell Reports 13(5):924-32 Wishard TM, Mutsaers CA, Riesland M, Reimer MM, Fuller HR, Hannam ML, Morse R, Young PJ, Lamont DJ, Hammerschmidt M, Morris GE, Parson SH, Skehel PA, Becker T, Robinson IM, Becker CG, Wirth B, Gillingwater TH (2014). Dysregulation of Ubiquitin Homeostasis and β-catenin Signalling Promote Spinal Muscular Atrophy. Journal of Clinical Investigation 124(4):1821-34. Sleigh JN, Barreiro-Iglesias A, Oliver PL, Biba A, Becker T, Davies KE, Becker CG, Talbot K. (2013) Chondrolectin affects cell survival and neuronal outgrowth in in vitro and in vivo models of spinal muscular atrophy. Hum Mol Genet 23(4):855-69 Reimer MM, Norris A, Ohnmacht J, Patani R, Zhong Z, Dias TB, Kuscha V, Scott AL, Chen Y, Rozov S, Frazer SL, Wyatt C, Higashijima S, Patton EE, Panula P, Chandran S, Becker T*, Becker CG* (2013) Dopamine signaling from the brain augments spinal motor neuron generation during development and adult regeneration via hedgehog pathway activation, Dev Cell 25(5): 478-491 Zhong Z, Ohnmacht J, Reimer MM, Bach I, Becker T, Becker CG (2012) Chondrolectin mediates growth cone interactions of motor axons with an intermediate target. J Neurosci 32(13):4426-39 Dias TB, Yang YJ, Ogai K, Molist P, Becker T*, Becker CG* (2012) Notch signalling controls generation of motor neurons in the lesioned spinal cord of adult zebrafish. J Neurosci 32(9):3245-52 Information for students: Willingness to discuss research projects with undergraduate and postgraduate students: YES - Please click here This article was published on 2022-10-17