Prof Catherina G Becker

Prof Becker's biography and research focus.

Professor Catherina G Becker

Honorary Professor 

The Chancellor's Building

49 Little France Crescent

EH16 4SB 

Contact details

 Email: Catherina.Becker@ed.ac.uk

 Web: Academic Profile

 

Research in a nutshell

Personal profile

2017 - 2021: Deputy Director of CDBS.

2015 - 2017: CNR Centre Director.

2005 - 2015: CNR Director of Postgraduate Training.

2005 - 2021: Senior Lecturer, Deanery of Biomedical Sciences, University of Edinburgh.

2000 - 2005: Group Leader, Centre for Molecular Neurobiology Hamburg (ZMNH).

1998 - 2000: Postdoc, Centre for Molecular Neurobiology Hamburg (ZMNH).

1996 - 1998: Postdoc, Dept Dev Cell Biol, University of California, Irvine.

1994 - 1996: Postdoc, Swiss Federal Institute of Technology, Zürich.

1993: PhD Neurobiology with honours, University of Bremen.

Research Theme

Injury and Repair

Genes and Development

Research

The Becker group is pursuing 3 main lines of research.

  1. We are investigating the cellular and molecular mechanisms underlying successful regeneration of the zebrafish spinal cord, focussing on the activation of spinal-intrinsic progenitor cells by the lesion and lesion induced neurogenesis (Becker and Becker (2015) Neuronal Regeneration from Ependymo-radial Glial Cells: Cook, Little Pot, Cook! Developmental Cell 32(4):516-27), as well as axonal regeneration (Becker and Becker (2014) Axonal Regeneration in Zebrafish. Current Opinion in Neurobiology 27C:186-191).
  2. We are using automated chemical compound screen in zebrafish models of motor neurone diseases, mainly spinal muscular atrophy, to identify targets for therapy. My group a founding member of the SMA UK Research Consortium, funded by the SMA Trust with £1.3m.
  3. We are investigating the molecular factors controlling the development of the spinal locomotor network to identify the fundamental relationship between network and function.

In summary, my research contributes to a better understanding of the factors governing generation of neurons and axonal pathfinding in the CNS during development and regeneration. I use the zebrafish model to identify fundamental mechanisms in vertebrates with clear translational implications for CNS injury and neurodegenerative diseases.

Funding

Group Members

Collaborations

Important Reviews

Becker CG, Becker T (2020) Coaxing stem cells to repair the spinal cord. Science. DOI: 10.1126/science.abe1661

El-Daher F, Becker CG (2020) Neural circuit reorganisation after spinal cord injury in Zebrafish, Current Opinions in Genetics DOI: 10.1016/j.gde.2020.05.017

Becker T, Becker CG (2020) Dynamic cell interactions allow spinal cord regeneration in zebrafish, Current Opinions in Physiology 14:64–69 DOI: 10.1016/j.cophys.2020.01.009

Becker CG, Becker T, Hugnot JP (2018) The spinal ependymal zone as a source of endogenous repair cells across vertebrates, Progress in Neurobiology, in press DOI: 10.1016/j.pneurobio.2018.04.002

Cardozo MJ, Mysiak KS, Becker T, Becker CG (2017) Reduce, Reuse, Recycle - Developmental Signals in Spinal Cord Regeneration. Developmental Biology, DOI:10.1016/j.ydbio.2017.05.011

Becker CG, Becker T (2015) Neuronal regeneration from ependymo-radial glial cells: cook, little pot, cook! Developmental Cell 32 (4), 516-527, DOI: 10.1016/j.devcel.2015.01.001

Becker T, Becker CG (2014) Axonal regeneration in zebrafish, Current Opinion in Neurobiology 27, 186-191 DOI: 10.1016/j.conb.2014.03.019

Selected Publications

Oprişoreanu AM, Smith HL, Krix S, Chaytow H, Carragher N, Gillingwater TH, Becker CG, Becker T, (2021) Automated in vivo drug screening for synapse-stabilisation in zebrafish. Disease Models and Mechanisms, in press

Cavone L, McCann T, Drake LK, Aguzzi EA, Oprişoreanu AM, Pedersen E, Sandi S, Selvarajah J, Tsarouchas TM, Wehner D, Keatinge M, Henderson BEP, Dobie R, Henderson NC, Becker T and Becker CG. (2021) A unique macrophage subpopulation signals directly to progenitor cells to promote regenerative neurogenesis in the zebrafish spinal cord. Developmental Cell, accepted in principle https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3712669

Keatinge M, Tsarouchas TM, Munir T, Larraz J, Gianni D, Tsai HH, Becker CG*, Lyons DA*, Becker T* (2021) Phenotypic screening using synthetic CRISPR gRNAs reveals pro-regenerative genes in spinal cord injury, PLoS Genetics in press, https://doi.org/10.1101/2020.04.03.023119https://doi.org/10.1101/2020.04.03.023119

Oprişoreanu AM, SmithHL, AryaS, WebsterR, ZhongZ, WehnerD, CardozoMJ, Becker  T, TalbotK, Becker CG (2019) Interaction of axonal Chondrolectin with Collagen XIXa1 is necessary for precise neuromuscular junction formation. Cell Reports, 29(5):1082-1098.e10 DOI: 10.1016/j.celrep.2019.09.033

Caldwell LJ, Davies NO, Cavone L, Mysiak KS, Semenov SA, Panula P, Armstrong JD, Becker CG*, Becker T* (2019) Regeneration of dopaminergic neurons in adult zebrafish depends on immune system activation and differs for distinct populations, J Neurosci 12;39(24):4694-4713 DOI: 10.1523/JNEUROSCI.2706-18.2019

Tsarouchas TM, Wehner D, Cavone L, Munir T, Keatinge M, Lambertus M, Underhill A, Barrett T, Kassapis E, Ogryzko N, Feng Y, van Ham TJ, Becker T, Becker CG (2018) Dynamic control of proinflammatory cytokines Il-1β and Tnf-α by macrophages is necessary for functional spinal cord regeneration in zebrafish, Nature Communication 7;9(1):4670 DOI: 10.1038/s41467-018-07036-w

Wehner D, Tsarouchas TM, Michael A, Haase C, Weidinger G, Reimer MM, Becker T*, Becker CG* (2017) Wnt signaling controls a pro-regenerative extracellular matrix in functional spinal cord regeneration, Nature Communications 25;8(1):126  DOI: 10.1038/s41467-017-00143-0

Boyd PJ, Tu WY, Shorrock HK, Powis RA, Groen EJN, Thomson SR, Thomson D, Graham LC, Wishart TM, Highley JR, Becker T, Becker CG, Heath PR, Gillingwater TH (2017) Bioenergetic status determines motor neuron vulnerability in spinal muscular atrophy, PLoS Genetics 13(4):e1006744

Ohnmacht J, Yang Y, Maurer GW, Barreiro-Iglesias A, Tsarouchas TM, Wehner D, Sieger D, Becker CG*, Becker T* (2016).  Spinal Motor Neurons are Regenerated after Mechanical Lesion and Genetic Ablation in Larval Zebrafish.  Development 143:1464-1474

Barreiro-Iglesias A, Mysiak KS, Scott AL, Reimer MM, Yang YJ, Becker CG*, Becker T* (2015).  Serotonin Promotes Development and Regeneration of Spinal Motor Neurons in Zebrafish. Cell Reports 13(5):924-32

Wishard TM, Mutsaers CA, Riesland M, Reimer MM, Fuller HR, Hannam ML, Morse R, Young PJ, Lamont DJ, Hammerschmidt M, Morris GE, Parson SH, Skehel PA, Becker T, Robinson IM, Becker CG, Wirth B, Gillingwater TH (2014).  Dysregulation of Ubiquitin Homeostasis and β-catenin Signalling Promote Spinal Muscular Atrophy. Journal of Clinical Investigation 124(4):1821-34.

Sleigh JN, Barreiro-Iglesias A, Oliver PL, Biba A, Becker T, Davies KE, Becker CG, Talbot K. (2013) Chondrolectin affects cell survival and neuronal outgrowth in in vitro and in vivo models of spinal muscular atrophy. Hum Mol Genet 23(4):855-69

Reimer MM, Norris A, Ohnmacht J, Patani R, Zhong Z, Dias TB, Kuscha V, Scott AL, Chen Y, Rozov S, Frazer SL, Wyatt C, Higashijima S, Patton EE, Panula P, Chandran S, Becker T*, Becker CG* (2013) Dopamine signaling from the brain augments spinal motor neuron generation during development and adult regeneration via hedgehog pathway activation, Dev Cell 25(5): 478-491

Zhong Z, Ohnmacht J, Reimer MM, Bach I, Becker T, Becker CG (2012) Chondrolectin mediates growth cone interactions of motor axons with an intermediate target. J Neurosci 32(13):4426-39

Dias TB, Yang YJ, Ogai K, Molist P, Becker T*, Becker CG* (2012) Notch signalling controls generation of motor neurons in the lesioned spinal cord of adult zebrafish. J Neurosci 32(9):3245-52

Information for students:

Willingness to discuss research projects with undergraduate and postgraduate students: YES  - Please click here